Inference of modules associated to eQTLs
نویسندگان
چکیده
Cataloging the association of transcripts to genetic variants in recent years holds the promise for functional dissection of regulatory structure of human transcription. Here, we present a novel approach, which aims at elucidating the joint relationships between transcripts and single-nucleotide polymorphisms (SNPs). This entails detection and analysis of modules of transcripts, each weakly associated to a single genetic variant, together exposing a high-confidence association signal between the module and this 'main' SNP. To explore how transcripts in a module are related to causative loci for that module, we represent such dependencies by a graphical model. We applied our method to the existing data on genetics of gene expression in the liver. The modules are significantly more, larger and denser than found in permuted data. Quantification of the confidence in a module as a likelihood score, allows us to detect transcripts that do not reach genome-wide significance level. Topological analysis of each module identifies novel insights regarding the flow of causality between the main SNP and transcripts. We observe similar annotations of modules from two sources of information: the enrichment of a module in gene subsets and locus annotation of the genetic variants. This and further phenotypic analysis provide a validation for our methodology.
منابع مشابه
Causal inference of gene regulation with subnetwork assembly from genetical genomics data
Deciphering the causal networks of gene interactions is critical for identifying disease pathways and disease-causing genes. We introduce a method to reconstruct causal networks based on exploring phenotype-specific modules in the human interactome and including the expression quantitative trait loci (eQTLs) that underlie the joint expression variation of each module. Closely associated eQTLs h...
متن کاملDetection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic traits, including disease states, are usually found in non-coding genomic regions. These genetic variants are often also associated to differences in expression levels of nearby genes (they are “expression quantitative trait loci” or eQTLs for short) and presumably play a gene regulatory role, affecting the status of ...
متن کاملIntegrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence
Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonf...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملA Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules
Studies of the relationship between DNA variation and gene expression variation, often referred to as "expression quantitative trait loci (eQTL) mapping", have been conducted in many species and resulted in many significant findings. Because of the large number of genes and genetic markers in such analyses, it is extremely challenging to discover how a small number of eQTLs interact with each o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012